Diễn đàn học tập của Hocmai.vn


Diendan.hocmai.vn - Học thày chẳng tày học bạn! » Toán » Toán lớp 8 » Đại số » CM BĐT với , b, c >0




Trả lời
  #1  
Cũ 02-07-2012
nhocdangyeu789 nhocdangyeu789 đang ngoại tuyến
Thành viên
Thành viên của lớp
 
Tham gia : 01-04-2012
Bài viết: 18
Đã cảm ơn: 14
Được cảm ơn 4 lần
CM BĐT với , b, c >0

Bài 1:
\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}\ge  q a^2b+b^2c+c^2a
Bài 2:
\frac{a^6}{b^2c^2}+\frac{b^6}{c^2a^2}+\frac{c^6}{a  ^2b^2}\geq ab+bc+ca
Bài 3:
\frac{1}{\sqrt[]{a}}+\frac{1}{\sqrt[]{b}}+\frac{2\sqrt[]{2}}{\sqrt[]{c}}\geq\frac{8}{\sqrt[]{a+b+c}}
Bài 4:
\frac{1}{a^2}+\frac{1}{b^2}+\frac{8}{c^2}\geq\frac  {64}{(a^2+b^2+c^2)}

Thay đổi nội dung bởi: daovuquang, 02-07-2012 lúc 14:30.
Trả Lời Với Trích Dẫn
  #2  
Cũ 02-07-2012
vansang02121998's Avatar
vansang02121998 vansang02121998 đang ngoại tuyến
Thành viên
Bí thư
 
Tham gia : 21-11-2010
Đến từ: THPT chuyên Nguyễn Trãi
Bài viết: 1,518
Điểm học tập:731
Đã cảm ơn: 124
Được cảm ơn 1,075 lần
Áp dụng bất đẳng thức Cauchy cho 2 số không âm, ta có

$\frac{a^6}{b^2c^2}+\frac{b^6}{c^2a^2} \geq 2.\frac{a^2b^2}{c^2}$

$\frac{b^6}{c^2a^2}+\frac{c^6}{a^2b^2} \geq 2.\frac{b^2c^2}{a^2}$

$\frac{c^6}{a^2b^2}+\frac{a^6}{b^2c^2} \geq 2.\frac{c^2a^2}{b^2}$

$\Rightarrow 2(\frac{a^6}{b^2c^2}+\frac{b^6}{c^2a^2}+\frac{c^6} {a^2b^2}) \geq 2(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a ^2}{b^2})$

$\Leftrightarrow \frac{a^6}{b^2c^2}+\frac{b^6}{c^2a^2}+\frac{c^6}{a ^2b^2} \geq \frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2 }{b^2}$

Áp dụng bất đẳng thức Cauchy cho 2 số không âm, ta có


$\frac{a^2b^2}{c^2}+\frac{a^2c^2}{b^2} \geq 2a^2$

$\frac{a^2c^2}{b^2}+\frac{b^2c^2}{a^2} \geq 2c^2$

$\frac{b^2c^2}{a^2}+\frac{a^2b^2}{c^2} \geq 2b^2$

$\Rightarrow 2(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c ^2}{b^2}) \geq 2(a^2+b^2+c^2)$

$\Leftrightarrow \frac{a^2b^2}{c^2}+\frac{a^2c^2}{b^2}+\frac{b^2c^2 }{a^2} \geq a^2+b^2+c^2$

Ta có $(a-b)^2+(b-c)^2+(c-a)^2 \geq 0 \forall a;b;c$

$\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2 \geq 0$

$\Leftrightarrow 2(a^2+b^2+c^2)-2(ab+ac+bc) \geq 0$

$\Leftrightarrow 2(a^2+b^2+c^2) \geq 2(ab+ac+bc)$

$\Leftrightarrow a^2+b^2+c^2 \geq ab+ac+bc$

$\Rightarrow \frac{a^2b^2}{c^2}+\frac{a^2c^2}{b^2}+\frac{b^2c^2 }{a^2} \geq ab+ac+bc$

$\Rightarrow \frac{a^6}{b^2c^2}+\frac{b^6}{c^2a^2}+\frac{c^6}{a ^2b^2} \geq ab+ac+bc$
Trả Lời Với Trích Dẫn Đúngdaovuquang Đáp án hay hơn Thông báo xác nhận sai
Có 2 thành viên đã gửi lời cảm ơn đến vansang02121998 với bài viết này:
  #3  
Cũ 02-07-2012
bboy114crew's Avatar
bboy114crew bboy114crew đang ngoại tuyến
MEMVIP
Có chí thì nên
Tớ là ếch xanh
Am hiểu Âm Nhạc
Bí thư
 
Tham gia : 10-01-2010
Đến từ: A1K46 Math - Tổng hợp
Bài viết: 1,751
Điểm học tập:1349
Đã cảm ơn: 1,657
Được cảm ơn 1,880 lần
Lớp 8 mà làm mấy bài này hả?
1)Theo AM-GM ta có:
$\frac{a^5}{b^2}+ab^2 \ge 2a^3$
Làm tương tự ròi cộng lại ta được:
$\sum \frac{a^5}{b^2} \ge 2\sum a^3-\sum ab^2$
Ta sẽ chứng minh:
$2\sum a^3 \ge \sum ab(a+b)$
Điều này hiển nhiên đúng do:
$a^3+b^3 \ge ab(a+b);c^3+b^3 \ge cb(c+b);a^3+c^3 \ge ac(a+c)$
3) Cho $a=b=c=1$ thì BĐT sai!
__________________
ZOLO

Thay đổi nội dung bởi: bboy114crew, 02-07-2012 lúc 19:33.
Trả Lời Với Trích Dẫn Đúngdaovuquang Đáp án hay hơn Thông báo xác nhận sai
  #4  
Cũ 02-07-2012
nhocdangyeu789 nhocdangyeu789 đang ngoại tuyến
Thành viên
Thành viên của lớp
 
Tham gia : 01-04-2012
Bài viết: 18
Đã cảm ơn: 14
Được cảm ơn 4 lần
Trích:
Nguyên văn bởi bboy114crew Xem Bài viết
Lớp 8 mà làm mấy bài này hả?
1)Theo AM-GM ta có:
$\frac{a^5}{b^2}+ab^2 \ge 2a^3$
Làm tương tự ròi cộng lại ta được:
$\sum \frac{a^5}{b^2} \ge 2\sum a^3-\sum ab^2$
Ta sẽ chứng minh:
$2\sum a^3 \ge \sum ab(a+b)$
Điều này hiển nhiên đúng do:
$a^3+b^3 \ge ab(a+b);c^3+b^3 \ge cb(c+b);a^3+c^3 \ge ac(a+c)$
3) Cho $a=b=c=1$ thì BĐT sai!
em mới lớp 8 mà, ko thể hiểu được, anh có thể làm như vansang dc ko, thầy giáo cho ở phần cauchy mà
Trả Lời Với Trích Dẫn
  #5  
Cũ 04-07-2012
vansang02121998's Avatar
vansang02121998 vansang02121998 đang ngoại tuyến
Thành viên
Bí thư
 
Tham gia : 21-11-2010
Đến từ: THPT chuyên Nguyễn Trãi
Bài viết: 1,518
Điểm học tập:731
Đã cảm ơn: 124
Được cảm ơn 1,075 lần
$\sum$: Dấu này lên lớp 9 mới học ( mà hình như sgk k có )

Áp dụng bất đẳng thức Cauchy cho 2 số không âm, ta có

$\frac{a^5}{b^2}+ab^2 \geq 2a^3$

$\frac{b^5}{c^2}+bc^2 \geq 2b^3$

$\frac{c^5}{a^2}+ca^2 \geq 2c^3$

$\Rightarrow \frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}+ab ^2+bc^2+ca^2 \geq 2(a^3+b^3+c^3)$

$\Leftrightarrow \frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2} \geq 2(a^3+b^3+c^3)-ab^2-bc^2-ca^2$

Ta có

$(a-b)^2(a+b) \geq 0 \forall a;b \geq 0$

$\Leftrightarrow a^3-a^2b-ab^2+b^3 \geq 0$

$\Leftrightarrow a^3+b^3 \geq a^2b+ab^2$

Chứng minh tương tự, ta có

$b^3+c^3 \geq b^2c+bc^2$

$c^3+a^3 \geq c^2a+ca^2)$

$\Rightarrow 2(a^3+b^3+c^3) \geq a^2b+ab^2+b^2c+bc^2+c^2a+ca^2$

$\Rightarrow 2(a^3+b^3+c^3) - ab^2-bc^2-ca^2 \geq a^2b+b^2c+c^2a$

$\Rightarrow \frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2} \geq a^2b+b^2c+c^2a$

P/s: Bài 3 thay a=b=c=1 vào bất đẳng thức vẫn đúng, chỉ có bài 4 là sai thôi

Thay đổi nội dung bởi: vansang02121998, 04-07-2012 lúc 09:27.
Trả Lời Với Trích Dẫn
Trả lời

Chia sẻ/đánh dấu bài viết


Ðiều chỉnh Tìm trong bài viết
Tìm trong bài viết:

Tìm chi tiết
Xếp bài

Quyền hạn của bạn
Bạn không thể tạo chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể đăng tập đính kèm
Bạn không thể sửa bài của mình

BB codeMở
Smilies đang Mở
[IMG] đang Mở
HTML đang Tắt

 
Bài giảng miễn phí















Đề thi miễn phí






Múi giờ GMT +7. Hiện tại là 02:48.
Powered by: vBulletin v3.x.x Copyright ©2000-2015, Jelsoft Enterprises Ltd.

Cơ quan chủ quản: Công ty Cổ phần Đầu tư và Dịch vụ Giáo dục
Trụ sở: Phòng 2504, tòa nhà 71 Nguyễn Chí Thanh, Đống Đa, Hà Nội
Tel: +84 (4) 3519-0591 Fax: +84 (4) 3519-0587
Giấy phép cung cấp dịch vụ mạng xã hội trực tuyến số 196/GXN-TTĐT Cục Quản lý PTTH&TTĐT cấp ngày 11/11/2011
Chịu trách nhiệm nội dung: Đặng Quang Hùng